IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 23, 2021, accepted October 16, 2021, date of publication October 21, 2021, date of current version October 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3122100

JONNEE: Joint Network Nodes and

Edges Embedding

ILYA MAKAROV“1.23, KSENIA KOROVINA!, AND DMITRII KISELEV“'1:3

'HSE University, 101000 Moscow, Russia
2University of Ljubljana, 1000 Ljubljana, Slovenia
3 Artificial Intelligence Research Institute (AIRI), 105064 Moscow, Russia

Corresponding authors: Ilya Makarov (iamakarov@hse.ru) and Dmitrii Kiselev (dkiseljov@hse.ru)

This work was supported by HSE University.

ABSTRACT Recently, graph embedding models significantly improved the quality of graph machine
learning tasks, such as node classification and link prediction. In this work, we propose a model called
JONNEE (JOint Network Nodes and Edges Embedding), which learns node and edge embeddings under
self-supervision via joint constraints in a given graph and its edge-to-vertex dual representation as a Line
graph. The model uses two graph autoencoders with additional structural feature engineering and several
regularization techniques to train for an adjacency matrix reconstruction task in an unsupervised setting.
Experimental results show that our model performs on par with state-of-the-art undirected attribute graph
embedding models and requires less number of epochs to achieve the same quality due to Line graph self-

supervision under a unified embedding framework.

INDEX TERMS Graph machine learning, graph neural networks, line graph, link prediction, network
embedding, network representation learning, node classification.

I. INTRODUCTION

Networks appear in many real-world tasks that require
describing important relations between objects and their
attributes. Effective network representation provides valuable
information on how graph structure can improve understand-
ing and feature extraction of structural information accompa-
nied by non-network features.

Nowadays, machine learning methods demand the repre-
sentation of information in the vectorized form to follow stan-
dard frameworks for classic machine learning tasks. Graph
machine learning is usually associated with particular node-
level machine learning problems, such as node classification,
link prediction, and node clustering, followed by network
visualization. In order to feed graph data to machine learning
frameworks, network embedding emerges as an effective and
efficient approach to solve machine learning problems on
networks. It maps graph motifs, such as nodes and edges,
into a low-dimensional space while preserving certain graph
information and constraints related to the graph.

Today, there exists a large variety of graph embed-
dings that automatically extract vector representation for

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino

144646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

networks [1]-[8]. All network embeddings have different
training and inference complexity, various construction ideas,
and diverse applications to network data domains. However,
the concept of network representation learning allows to
combine them in a general pipeline verifying in terms of
the quality of graph machine learning tasks on benchmark
networks.

Different models have their own advantages and shortcom-
ings. For example, sequence-based models can be efficiently
trained for large graphs but do not take into account features
in nodes and edges. Adjacency matrix factorization frame-
works have high quality while being very costly and slow to
train. Models based on deep learning methods can efficiently
incorporate features but are hard to train and interpret in terms
of which factors and neighbors impact model performance the
most.

Moreover, all of these models mostly rely on node embed-
dings for constructing edge embeddings: while node embed-
dings are trained, edge embeddings used for link prediction
task are usually presented by certain symmetric operators
of incident node embeddings [9] or their low-dimensional
bi-linear representation [10]. Such an approach does not
consider the noise in the edge data, nor does it describe
the fact that edge formation and features may be obtained

VOLUME 9, 2021

https://orcid.org/0000-0002-3308-8825
https://orcid.org/0000-0001-6190-7587
https://orcid.org/0000-0002-9843-9219

I. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

IEEE Access

independently from graph structure and jointly learned under
the self-supervised framework.

In our study, we aim to construct a model that combines the
best of all three classical approaches for network embeddings
under Line graph self-supervision: sequence-based models
for fast feature generation, capturing structural information
and high-order dependencies; deep learning model autoen-
coder for its expressiveness and effective use of generated
features; and matrix factorizations for simplicity in model
regularization.

A new model embeds nodes and edges into common vector
space as latent codes of the original graph and Line graph
autoencoders (the similar idea was used in [11] and [12]) with
shared loss function similar to proposed in [13]-[15] edge
embedding operators for “pooling” the first-order neighbor-
hood of source and target nodes.

Our goal is to learn better node representations by using
an edge-to-node direction and explicitly regularizing a node
embedding to be close to the average of the embeddings
of the edges incident to it as an objective instead of using
deterministic mapping. This idea expresses that a node should
be not only a center of its node neighborhood, but also a center
of its dual edge neighborhood, and explicitly support edge
reconstruction from incident nodes as their local averages
based on Line graph representation.

Since our focus is on the idea that edges may include
additional information that could be presented not only by
incident node embeddings alone, we first focus on the link
prediction problem to guide our model evaluation. The link
prediction problem is one of the core machine learning tasks
on graphs, which can be solved by our model better than
by other state-of-the-art solutions. Secondly, we aim to test
JONNEE model on multi-class node classification problem
under unsupervised and semi-supervised settings. Finally,
JONNEE embeddings were used for demonstrating superior
quality on network visualization problem.

Overall, we show that JONNEE is a viable model that
often outperforms state-of-the-art unsupervised solutions for
classical machine learning problems on graphs.

In this work, the following contributions were made:

1) Novel JONNEE model on a joint network node and
edge embedding via Line graph self-supervision is
suggested.

2) Extensive experiments show the importance of each
component in JONNEE model on the resulting quality
of the finetuned model.

3) A comprehensive comparison of existing methods is
performed on node classification, link prediction, and
network visualization problems. Our model show equal
quality compared to state-of-the-art models while con-
verging faster in an unsupervised setting.

The rest of the paper is organized as follows. We start
by defining the problem field and reviewing existing net-
work embedding models in Section II. Section III contains
a detailed description of the proposed model and the moti-
vation behind each component, followed by the proofs of

VOLUME 9, 2021

their importance in Section IV. Next, the finetuned model
was compared to state-of-the-art network embeddings in
Section V. Section VI discusses experiment results, main
takeaways, and future work.

Il. RELATED WORK

We start by introducing essential definitions and establishing
general notation for our paper related to network science and
network representation learning.

Let us consider a graph G = (V, E) defined as a set of
vertices V and a set of edges E € V x V Additionally,
certain graph substructures may be equipped with attributive
features conveying information that cannot be expressed by
graph structure alone. For example, each node of a citation
network is a paper that may have a vector description of its
textual or semantic content. If these features are available,
we denote them as X € RIVIxdo where dop is a dimension of
original space for node attributive features.

The procedure for constructing a vector representation of
a graph is called graph embedding, which is a mapping
from a collection of substructures (most commonly, these
include either all nodes, all edges, or certain subgraphs) to
R¢. We will mostly consider node embeddings: f : V — R¢,
d < |V].

For many graph-based tasks, the most natural task for-
mulation is unsupervised learning: this is described as the
case when it is required to learn embeddings using only
the adjacency matrix A containing information on structural
similarity and, possibly, features X without task-specific loss
part. Another possible case is that there are labels available
for some graph substructures, and one wishes to recover
missing labels in a semi-supervised approach. One example
of this is the node classification task, in which all nodes are
available from the start, but only a fraction is labeled.

In order to describe network embedding definitions and
training settings, it is important to present a clarification
of what is meant by good network embedding. During the
embedding procedure, one should aim to compress the data
while retaining most of the essential information about direct
node similarities, and at the same time extract important
features from the structural information usually described
by high-order node proximities, which is some similarity
measure over node-related graph substructures, e.g. neigh-
borhoods. Higher-order proximities can be defined similarly,
usually at a higher computational cost. Apart from the cosine
measure usually adopted to quantify similarity, other met-
rics like Rooted PageRank, Katz Index, Common Neighbors,
Jaccard coefficient, Adamic Adar can also be used (see [16]
for more details).

Finally, when the task of constructing efficient node
embeddings is stated, let us describe the main approaches
for defining models’ architectures and optimization frame-
works and then describe the improvements suggested for edge
embeddings.

In order to describe the rapidly growing field of network
embeddings, we use one of the possible taxonomies covering

144647

IEEE Access

1. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

the idea of network embedding construction via optimization
problem. There are usually three general categories related
to matrix factorizations, sequential models, and graph neural
networks. Below, we provide a brief overview of existing
approaches for each category following the detailed survey
in [8] and review existing edge embedding models con-
structed over node embeddings which leads to the main moti-
vation behind our model.

A. MATRIX FACTORIZATION AND LAPLACIAN METHODS
Starting with matrix factorization methods, these models
usually factorize large adjacency matrix with a product of
two matrices containing network and context representations.
Factorization models are common techniques for approach-
ing a dimension reduction problem in many domains.

Some methods directly decompose the adjacency matrix
A [17]-[19] or the graph proximity matrix [20]-[22].

The goal for Laplacian Eigenmaps [23]-[25] class of mod-
els lies in preserving first-order similarities via representing
each node by graph Laplacian eigenvectors associated with
its first k nontrivial eigenvalues.

Thus, using graph Laplacian, a model gives a more signifi-
cant penalty if two nodes with larger similarity are embedded
far apart in the embedding space.

Another approach is to directly factor the node proximity
matrix into a product of embedding F and context F,. matri-
ces, with symmetric models using only F' (e.g., GraRep [26]),
or asymmetric models (e.g., HOPE [16]) concatenating rep-
resentations from F' and F, rows.

In most cases, factorization approaches are not able to
learn on which order proximities to focus attention, require a
transductive learning paradigm and have high computational
complexity.

B. SEQUENCE-BASED APPROACHES

Overcoming limitations on time complexity for the
factorization models, sequence-based embeddings use differ-
ent random walk strategies to maximize the probability of
observing sampled neighborhood (context) of a node given
its embedding.

The idea is to maximize the probability of observing the
neighborhood of a node given its embedding similar to Skip-
gram model [27]. The most well-known random walk based
graph embeddings are DeepWalk [28] and node2vec [9].

There are also other models inspired by factorization mod-
els incorporating high-order proximities [29]-[31], preserv-
ing community structure [32]-[34] or taking into account
attention on sampled walks [35], [36].

One of the most efficient sequential models based on graph
Laplacian approximation and sampling strategy around the
node is based on sampling neighborhood using graph diffu-
sion presented in diff2vec [37].

In general, sequence-based models are efficient for repre-
senting structural information alone. They can be used for
feature engineering in conjunction with other models, taking
node and edge attributes into account.

144648

C. GRAPH NEURAL NETWORKS

Graph neural networks incorporate graph structure into clas-
sic deep learning models, thus connecting neural networks
and automated graph feature engineering.

Before the beginning of the deep learning era, graph sig-
nal processing techniques using graph spectral decompo-
sition were suggested in [38] and [39]. Advances in deep
learning allow applying of deep neural networks to graph
data [40]-[44].

In [45], authors propose Graph Convolutional Layer that
further simplifies approximation to spectral convolu-
tion and achieves improved computational efficiency for
semi-supervised multi-class node classification. A model
combining several such convolutions is referred to as
Graph Convolutional Network (GCN). Improvements over
speed and optimization of training GCNs were suggested
in [46]-[48]. Different convolutions via spatial or graph spec-
tral methods were suggested in [49]-[58].

Similar to the other fields, autoencoders were proposed
to train unsupervised node-level representations [59]. Graph
Autoencoder (GAE) is based on several graph convolutional
layers to encode graph structure and inner-product decoder
to reconstruct the adjacency matrix. Variational graph autoen-
coder (VGAE) [59] extends the previous model with different
GCN encodings for mean and standard deviation.

In recent work, authors of GraphSAGE [60] offer an
extension of GCN for inductive unsupervised representation
learning via trainable aggregation functions instead of simple
convolutions applied to neighborhoods in GCN. GraphSAGE
learns aggregation functions for a different number of hops
applied to sampled neighborhoods of different depths, which
are then used for obtaining node representations from initial
node features.

Another direction of research is to extend attention from
random walks and factorization techniques. GAT model [61]
uses masked self-attention layers for learning weights balanc-
ing the impact of neighbors on node embedding and support-
ing both inductive and transductive learning settings.

Recent deep learning based models readily exploit node
features when those are available are flexible and generic
but still least understood and not as efficient as conventional
Euclidean deep learning models with independent samples in
terms of optimization.

D. EDGE EMBEDDINGS

There exists a variety of models used to construct edge
embeddings along with downstream tasks involving graphs
and their embeddings. HARP [31] incorporates several hier-
archical layers, and constructs node embedding from edge
embedding. Considering attribute networks, CANE [62] and
LANE [63] directly incorporate edge features and labels
into network embedding. Multi-edge network embedding for
event graphs (in which an event is described by several edges)
was presented in HEBE [64]. Interestingly, Knowledge Graph
(KG) completion solves link prediction between entities [65],
however these methods are not applicable to homogeneous

VOLUME 9, 2021

I. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

IEEE Access

networks with one type of edges. Approaches for component-
wise edge embedding operators based on node embeddings
were suggested in many research papers [9], [10], [13], [15],
[66]-[68] while other studies just concatenate node embed-
dings [45], [60], [69].

Recently, self-supervised graph machine learning arose as
a popular direction on network embeddings via improving
models under limited data constraints. It aims to use dif-
ferent low-level augmentation strategies for training model
under self-supervised setting [70], [71]. However, there is no
approach to include both node and edge embeddings directly
under one optimization problem.

Definition I (Dual Graph): For a graph G = (V,E)
defined as a set of vertices V and asetofedges E C V x V
we denote by G* = (V*, E*) a line (dual) graph, the nodes of
which are the edges of G and edges are nodes, in the sense that
two adjacent nodes are connected by an edge if corresponding
edges have the incident node.

Remark 1: Of course, by “dual” we mean ‘“edge-to-
vertex dual” or congruent graph, also known as Line graph.
The “‘edge-to-vertex” duality concept is preserved through-
out the paper as it gives additional motivation for our graph
representation. There is also correspondence, albeit not a
bijective one, between nodes of G and edges of G*. Finally,
it is important to mention that only simple undirected graphs
without loops and multiple edges will be considered for our
study.

The Line graph usage was suggested for joint node
and edge structure learning in Dual-Primal GCN [12]
and ELAINE [72] in semi-supervised learning setting.
However, these models were not applicable to any undi-
rected weighted networks and graph machine learning
tasks.

With the present work, we propose a model that com-
bines the best of three core approaches for node embeddings:
sequence-based models for fast feature generation, captur-
ing structural information and high-order dependencies; deep
learning model autoencoder for its expressiveness and effec-
tive use of generated features; and matrix factorizations for
simplicity of model regularizing. In addition, self-supervision
in matrix reconstruction task via Line graph embedding is a
novel idea, which is also one of the main contributions of our
work.

Ill. MODEL: DUAL GRAPH AUTOENCODER

A novel approach is required to address the problems dis-
cussed above and further improve upon the existing models.
We propose a model of Dual Graph Autoencoder, which
learns JOint Nodes and Edges Embedding, called JONNEE.
The model name was chosen specifically to distinguish it
from another approach presented in the paper on Dual-
GCN [73], in which duality concept stands for local and
global network features. Our model is designed to be espe-
cially effective when only structural information is available,
but it also accommodates node and edge weights and features.
The model is shown in Figure 1.

VOLUME 9, 2021

(-} - decoder (-) - decoder

GCN encoder GCN encoder

N * o
Y Seq Seq y
- B -

FIGURE 1. Proposed JONNEE model for learning unsupervised
embeddings.

We start by describing the model and its essential compo-
nents. Learning in JONNEE proceeds in two steps.

1) Feature learning: during this stage, features for the
graph and its dual graph are generated as embeddings
through a sequence-based method.

2) Joint learning of two autoencoders on a graph and on
its dual graph, learning both representations for nodes
and edges simultaneously and in a consistent manner.

Remark 2: With minor modifications, both steps can be
combined in an end-to-end pipeline. Feature generation may
be skipped or substituted with end-to-end modeling random
walks with graph neural network [36]. As with traditional
autoencoders, our model has a deterministic version as well
as its probabilistic analog. To keep the exposition simple,
we focus on describing the deterministic GAE-based option
here, implying that the extension to VGAE-based setting is
carried out in the same manner as described in Section I1I-B
and is thus straightforward.

As input to JONNEE, a graph G = (V, E), represented
with an adjacency matrix A € RV (binary or non-
negative valued for weighted graphs) and, optionally, node
attributes Xo € R!V1*% and edge attributes X5 € RIEIxdg
are available. Prior to learning, we obtain the graph dual
G* = (E,E'), E' € E x E in the form of its dual adja-
cency matrix. In the basic case, this graph just incorporates
structural information and is thus binary. However, it can
be weighted as well: for example, one can introduce node
weights as averages of edge weights to use as weights for dual
edges that correspond to these nodes. We leave experimental
testing of this idea for future work in this area as suggested
in [13] studying first-order proximity link embedding opera-
tors. If the graph is weighted, its weights are normalized to

144649

IEEE Access

1. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

be ll)ounded by 1 just using a normalized adjacency matrix
_1 21
Al A-A2

degree degree”

The structure of the model description Section III is as
follows. We start with a discussion feature learning from
sequential models and the idea behind this process. Next,
we discuss graph autoencoders for the graph and its Line
graph. After the model is determined, we explain the loss
function and the regularization tricks used in it. Finally,
we discuss the training procedure and its convergence in
the unsupervised setting and also present JONNEE semi-
supervised counterpart with natural modifications from the
original model.

A. FEATURE LEARNING

During the first stage, the algorithm linearizes the graph using
an algorithm Seq € {node2vec, diff2vec}, which can be
either random walks or diffusion. Seq learns features X; =
Seq(G,u) and X{ = Seq(G*, u*) of a size u for G and u*
for G* separately. If node and dual node (edge) features Xo
and X()k are available from the outset, they are concatenated
with learned sequence embeddings described below to form
augmented feature sets:

X =[Xo. X1 e RV*P, X* = [X5. X;1 e REP" (1)

In (1) we denote as D = dp + u the total output number
of features per node and D* = dj + u the total output
number of features per edge. We will assume that the same
augmented feature dimensionality u is sufficient to learn
sequence embeddings from both G and G*, that is, u* = u.
In our experiments, we set both node2vec and diff2vec
parameters to default values proposed in the reference imple-
mentations (see [9] and [37]), and leave parameter tuning for
future work.

As has been discussed in Section II, informative node
features can improve learning representations, especially for
graph convolutional networks and graph autoencoders that
employ a sequence of graph convolutions as an encoder.
Indeed, these models could be interpreted to operate on
node features, effectively passing messages between them
to update a feature based on convolving its local neighbor-
hood until they are sufficiently consistent. This means that a
good initial approximation will most likely not only speed
up convergence but also ensure a significantly better local
optimum [74].

One way to generate such an approximation is to employ
a more lightweight algorithm for learning embeddings. For
this purpose, we use sequence-based algorithms (node2vec
and diff2vec), as they have an essential property for light ini-
tialization, which is the lowest complexity among all the other
models described. Moreover, there is an established intuition
that ensembling, which we implicitly perform in the model,
works better if it combines sufficiently different models. That
supports our decision to take sequence-based algorithms that
rely on node contexts and sampling to complement graph

144650

convolutions. Experiments show the importance of such a
feature generation procedure.

Another goal is to explore the best way for feature gen-
eration in various settings: for weighted and unweighted
graphs, for graphs with and without additional node features.
We observe that although GAE works with any adjacency
matrix, not necessarily a binary-valued one, it is helpful to
make use of edge weights during feature learning as well.
While node2vec supports node weights, we found out that the
original diff2vec does not, with diffusion from a given point
being performed uniformly over neighbors. We generalize
this model by weighting the choice over neighbors, thus
making diffusion more likely in the direction of heavier or
wider edges.

B. GRAPH AUTOENCODERS

Following feature generation, the second stage receives as
input the data A, X, and dual data A*, X*. Two graph
autoencoders GAE and GAE* are then trained on this
data to learn hidden representations F e RIVI*¢ and
F* e RIEI*4 These representations should have the same
dimensionality d, so that node and edge embeddings reside
in the same vector space. Autoencoders have the same sim-
ple architecture that consists of an encoder GCN with two
graph convolutional layers, regularized with dropout, and a
B-masked inner-product decoder obtaining reconstruction A
of the adjacency matrix A from graph embedding representa-
tions.

A two-layer GCN architecture is defined as

1

~~—— &

~_1
Hy = ReLUA, 2 AA.2

degree degreeX W) @)
~Ll 1
Hy = ReLU(AdeéreeAAde?;reeH 1W2) S

where A = A + I, Adegree;; = ZZU and ® = {W; €

J
RP*% W, e R"*?} are trainable parameters of GCN (X, A).

Following equations (2)-(3) graph and dual graph embed-
dings and reconstructions are specified as:

F=GCNX,A), A=o (FFT @B) 4)
F* = GCN(X*,A*), A*=o (F*F*T @B*) 5)

In (4)-(5) © denotes the Kronecker (point-wise) product of

matrices. Matrices B = (1 + Ba;;); ;and B* = (1 + ,B*a;-)' .

. i

with B8, B* > 0 allow us to soften learning and regularize the
model, especially on unweighted graphs.

This defines the forward pass of JONNEE model. Below,

we discuss the choice of GCN architecture and then go into

details of training and regularization procedures.

1) TRAINING WITH B-MASKING

Initially, an opposite idea was proposed in [43], where authors
weigh higher the actual positive-class terms in MSE recon-
struction loss in order to penalize their model more for
missing a possible connection than for incorrectly predicting

VOLUME 9, 2021

I. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

IEEE Access

an absent edge as likely. In VGAE, this is implemented by
sampling the positive class multiple times until the balance
is corrected. However, in our case, B-masking worked bet-
ter with respect to threshold-independent metrics, such as
F1-score, by fitting the model more loosely on the provided
adjacency matrix.

2) CHOICE OF THE ENCODER ARCHITECTURE

In our experiments, we consider an encoder composed of two
GCN layers. Although the depth of this model could vary,
we consider a shallow model is meaningful in many real-
world applications for graphs. Compared to images, we have
no regular filter structure and are struggling with the com-
putational hardness of considering distant relations between
nodes in a graph, which are not meaningful in many practical
scenarios. For example, a well-known social graph rule of
six handshakes states that any person knows any other person
through an average of five other people; in most actual cases
of local social networks, this number (effective graph diam-
eter) is even smaller. Thus, any number of encoding layers
over the graph diameter would be redundant. We also assume
that the number of edges is linear to the number of nodes in
most large real-world networks. So it is reasonable to reduce
the number of hyperparameters and take the same number of
first-layer hidden units for primal and dual encoders.

C. TRAINING

1) GRAPH RECONSTRUCTION LOSS

As reconstruction loss function, we employ mean squared
error (MSE), which is proportional to Frobenius matrix norm
of the error:

= lA—AllF ~ W Z(ai — a)® 6)
Lo+ = [|A* — A%|[} ~ W Z(az’; —ay ()
L,

In the case of an unweighted graph, one can also use the
standard cross-entropy loss function instead of MSE used
in (6)-(7).

2) JOINT LEARNING

Let us denote again as f and f* the node and edge represen-
tation mappings learned by GAE and GAE™ respectively, and
matrices F € RIV*? and F* € RIEIX? a5 their training set
images. Now, we describe how the learning of two models is
coupled, so that node representations benefit from edge rep-
resentations and vice versa. We suggest that a good represen-
tation for a node should be similar to averages across learned
representations for edges adjacent to this node, expressing
the idea that these edge representations have in common.
Furthermore, on the other hand, an edge representation is sim-
ilar to what its adjacent nodes share as representations learned
by the primal autoencoder. Informally, we want to achieve
some form of meaningful arithmetic for edge and node rep-
resentations, akin to that learned by word2vec: by averaging

VOLUME 9, 2021

over edges adjacent to a node, we ideally would extract some
common features. Another way to describe this is to note that
passing to a dual graph twice (from nodes to edges and then
back to nodes combining edges so that G** = G) should not
affect their representation too much since we wish the edge
representations to retain as much information about nodes as
possible, and vice versa.

Based on this idea, we add dual terms to our loss function:

Lo = Y _lIf () — NG Y @l ®)
veV | ()l ueN (v)
GZ . f@
[% _ teNC(u)UNC(v) 2 9
GG :(Z)E I - —Feor 2 ©

In (8)-(9) f(v) stands for embedding of node v in graph G,
f*((u, v)) stands for embedding of an edge ¢ = (u, v) in the
dual graph G*, and N @ (w) denotes neighborhood of a node
w in corresponding graph G’, which is either G or G* in our
case.

For convenience of setting up the model, we observe that
Lg+_, ¢ can be re-written in matrix form, using the incidence
matrix M € RIVIXIEl where each element is defined as
M, . = I{node v is adjacent to edge e}, then

Lot = |F — Ay} MF*|3

degree
3) LAPLACIAN REGULARIZATION
We use typical network problem structure knowledge and
add some tricks to regularize learned representations and
make them more robust. Namely, we draw inspiration from
previous researches, such as [43] and [75], and add Laplacian
regularization to both node and edge representations.
Intuitively, it seems plausible that a model that places more
emphasis on first-order proximity (through direct linkage)
is simpler than a model that is more reliant on neighbor-
hood similarities for second-order proximities. Thus, a way
to regularize our model and enforce preserving the direct
relationship is to add the Laplacian term, with a coefficient
controlling the strength of a regularizer. We impose this
regularization on both primal and dual GAE by adding appro-
priately weighted losses L, and L,,, defined as follows:

reg’
Z dij
Ly (F*) =) aj

N
In (10)-(11) d;, d} are node degrees in G and G*, T stands
CA-A " [¥=1—

degree’

2
=2w(FTLF) (10)

i

Lreg(F) S Zj
z

2
—2u(F*TL*F*) (11)

*
l

dr

.

i
*

d;

for transposition, andL =1 —A ~

degree
A2 A*ALL

degree AT€ corresponding normalized Laplacians.

degree

4) FINAL MODEL
We combine individual GAE loss functions (6)-(7), individ-
ual regularizers (10)-(11) and joint components (8)-(9) into

144651

IEEE Access

1. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

the following loss function:

L(®, ®%) = L;(®) + Lg+(0%)
FALreg(®) + A*L% (0%) + C - Lo+ (0, ©F)
+C* . Lo g<(®, ®%) (12)

In our experiments, we have only tested out adding one
term Lg+—G, due to computational limitations on large
graphs. Thus we omit the Lg_, g+ term from descriptions in
this work, making C* = 0. However, we believe that a more
symmetric model would learn better quality embeddings.

In (12) we denoted by ® and ®* the learnable parameters
of GAE and GAE™, respectively. These are essentially the
parameters of their GCN encoders, as was defined in (2)-(3).
During optimization, we iteratively update these weights with
back-propagation gradient descent, synchronously updating
them: first, the gradients are computed with respect to fixed
weights from the previous update step, and then parameters
get updated (for more information on optimization schemes,
see Section III-D). The model is shown in Figure 1.

D. OPTIMIZATION

In our implementation, we experiment with different training
regimes for joint optimization of two networks. The standard
training uses synchronous updates, computing gradients for
both GAE and GAE™ and renewing both parameter sets with
dual parameters held fixed at the previous value. As an alter-
native to simultaneously updating model weights, we pro-
pose to alternate updates for G and G*, between propagating
gradients from the loss associated with model G parameters
on even step and with model G* parameters on odd steps,
keeping G’s embeddings fixed. The idea is similar to the
training of generative adversarial network (GAN), in which
training a generator is alternated with training a discriminator.
We expect this regime to have a similar effect of stabilizing
training.

Following the author’s implementation of GAE [59],
we take Adam optimizer with a learning rate 0.01. In gen-
eral, larger graphs (over 10000 nodes) require more training
epochs; however, we observe that the order of hundreds or
even 100 to 200 epochs worked well on our test cases.

Due to differences in scale, some components of the com-
posite loss may overbalance others and disrupt optimization.
To cope with that, we initially perform scaling of the addi-
tional part of the loss A*L;*eg(®*) + C - Lg—g(®, ©*) to
make it equal to the general part Lg(®) 4+ Lg+(®*) times A
and then keep this scaling, effectively normalizing gradients
on every step based on the first step. In our tests, we observed
that A = 0.1, A* = 0.2 work the best, as was found via
hyper-parameter search. We also use standard deep learning
regularization tactics, adding a small dropout 0.1 after the
ReLU activation following the first convolutional layer. This
means that we randomly knock down a specified small share
of layer’s neurons on each forward pass during training and
turn our network into an ensemble, thus preventing excessive
co-adaptation of different neurons.

144652

E. JOINT DUAL GRAPH CONVOLUTIONAL NETWORK FOR
SEMI-SUPERVISED CLASSIFICATION

Additionally, JONNEE admits modifications for labeled data
incorporation in semi-supervised node K -class classification
with labeled nodes V; C V (dual construction allows to
work with semi-supervised edge classification, usually used
as entity recognition for knowledge graphs). This model
JONNLEE (with L for ‘Labeled’) is even simpler: instead
of reconstructing the adjacency matrix with an inner product
decoder, we may use one more GCN layer above repre-
sentations F with input size d and output size K to obtain
correct probabilities, which we train to approximate target
class probabilities by softmax normalization, so that class
probabilities &~ Softmax(GCNLayer(F)) € RIVEIxK,

If we have edge labels in addition to node labels, we can
use them in the same way. Otherwise, for the dual model
to be semi-supervised as well, we label an edge as 1 if it
connects two nodes with the same label, and O otherwise or if
one of the nodes is not in the training dataset and its label is
unknown. In such construction we force an edge to indicate
that its adjacent vertices belong to the same class, also using
softmax class probabilities ~ o (GCNLayer(F*)) € RIVLIx2,
This way, we can use our model with almost the same loss
function, in which Lg and Lg+ terms are now multinomial
cross-entropies between the one-hot label distribution and
the last layer output in the case of single-label multi-class
classification.

For the training set, we take the nodes that have labels. This
way, we learn node and edge representations consistent with
the training labels and also have them preserve first-order
proximities with Laplacian regularization.

IV. EXPERIMENTS WITH THE MODEL

In this section, we report on the experiments conducted to
validate the proposed model. We start with describing exper-
iment setup, model implementation, and machine learning
settings. Next, we provide description of extensive experi-
ments on the model components impact and hyper-parameter
optimization. Finally, we showed the value of two training
modes on the model performance.

A. EXPERIMENTAL SETUP

1) MODEL IMPLEMENTATION AND HARDWARE

The model is written in Python3 with PyTorch framework,
version python0.3.1.post2. The code to reproduce the
results will become available after the paper is accepted.
All computations have been conducted on a single lap-
top computer MacBook Pro 2013, with 2.3 GHz Intel
Core i7 processor with 4 cores and 16 GB RAM, with only
one core used in order to not exploit differences in models’
ability to parallelize.

2) EVALUATION FOR MACHINE LEARNING TASKS ON
GRAPHS

Since we maintain that edges can include additional informa-
tion that cannot be presented by incident nodes embeddings

VOLUME 9, 2021

I. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

IEEE Access

alone, we mainly focus on the link prediction problem to
guide our model evaluation. The link prediction problem is
one of the core machine learning tasks on graphs, which can
be solved by our model better than by other state-of-the-art
embedding-based solutions. Secondly, we test our model on
a multi-class node classification problem.

In these experiments, we run JONNEE for 100 epochs
on 5 random 2000-node subgraphs with 5 random train-
validation-test splits of all datasets except for HSE and Cora,
on which only different splits were used. All seeds are kept
the same for different algorithms and hyperparameter choices
within one test suite, while sigmoid activation of output
reconstruction layer was thresholded using validation set and
set to 0.6.

3) DATASETS
In Table 1, we provide a summary of datasets we use for

experiments.

TABLE 1. Summary of datasets.

[V] | E | # classes
Blog Casog 16 | " | 7% | 30 e
Ca-GrQc [76] 5242 14496 | -
CiHepTh 76 | 27770 | 352807 | -
Cora [45] %&Za(:i’res 5429 7 classes

B. COMPONENTS TESTING: FEATURE GENERATION

One of the central components of the model is seeding
the autoencoder with informative node features by learning
them with a sequence-based algorithm from the training data.
In this set of experiments, we verify that this procedure is
indeed useful and observe some other details regarding the
choice of sequence-based algorithm for feature generation.

1) GENERATED VS. DUMMY FEATURES

By dummy features, we refer to the identity matrix I, used
in place of node features and which can be viewed as a set
of uninformative features, with each feature only express-
ing the identity of its node. Other approaches are based on
random walks from node2vec (n2v in Tables) and diff2vec
(d2v in Tables) models as described previously in Section II1.
The results are shown in Table 2.

TABLE 2. Feature generation evaluation.

Dataset \ model | Dummy N2v D2v Metric
0.569 £ 0.038 | 0.612 £ 0.060 0.722 £0.036 | Acc

Cit-HepTh 0.593 £0.063 | 0.751 £ 0.074 0.771 £0.050 | ROC
0.573 £0.063 | 0.813 £0.055 | 0.791 £ 0.052 AP
0.666 £ 0.031 | 0.663 £ 0.059 0.702 £0.054 | FI
0.523 £0.029 | 0.686 & 0.027 | 0.543 4+ 0.033 Acc

HSE 0.513 £0.031 | 0.859 £0.031 | 0.807 £ 0.020 ROC
0.589 £0.015 | 0.889 +0.026 | 0.866 4+ 0.014 AP
0.548 £0.030 | 0.739 £0.026 | 0.642 £ 0.015 F1

VOLUME 9, 2021

These results show that the proposed procedure signif-
icantly improves performance over dummy features. The
choice between random walks and diffusion, in general,
depends on the graph’s properties: sparser graphs could be
better handled by diffusion, whereas random walks generally
yield better and more stable results on dense graphs.

2) CASE OF WEIGHTED GRAPH

Next, we analyze the performance of feature generation on
a weighted network. We observe that while a biased ran-
dom walk performed by node2vec can use edge weights by
placing additional weight onto "heavier’ edges where appro-
priate, the original diff2vec does not use weights. We were
able to slightly improve diff2vec performance on weighted
graphs by modifying its diffusion graph construction stage
to account for weights: we make propagation probabilities
proportional to respective edge weights, as shown in Table 3.
The HSE dataset itself was collected in [13] for HSE Uni-
versity co-authorship recommender system, while weights
represent the aggregated quality of overall papers published
by researchers.

TABLE 3. Comparison of regular and weighted diffusions.

Dataset \ model | D2v Weighted D2v Metric
0.552 £0.033 | 0.556 +0.037 | Acc

HSE 0.806 +0.013 | 0.811+0.030 | ROC
0.863 +0.017 | 0.866 +£0.014 | AP
0.642 +£0.013 | 0.648 +0.024 | F1

3) CASE OF NONTRIVIAL ATTRIBUTIVE NODE FEATURES X
In cases when additional information for each node is avail-
able, we face a potential trade-off: our learned sequence
features may dilute the information provided by these extra
features, which are valuable as they contain information
additional to the structure data. Thus, we compare different
options for making features on the first stage: we either con-
catenate two kinds of features or do not use sequence-based
features at all (for the reasons mentioned above, we assume
these features are valuable). Results on the Cora dataset are
reproduced in Table 4. We find that using learned features
X1 in addition to extrinsic ones Xy allows us to improve the
results over all metrics by a significant margin.

TABLE 4. Importance of domain-specific features X, on Cora dataset.

Dataset \ model | X [X0, N2v] | [Xo,D2v] | Metric
0.540 | 0.696 0.697 Acc

Cora 0.642 | 0.871 0.860 ROC
0.661 | 0.889 0.879 AP
0.659 | 0.750 0.750 F1

4) Node2vec VS diff2vec

Although node2vec proves to be more stable and reliable,
our experiments reveal that diffusion-based features result in
better clustering in the embedding space. Below, we visualize
d = 16 dimensional embeddings in 2 dimensions using

144653

IEEE Access

1. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

TSNE algorithm [78], which is a common dimensionality
reduction tool for vector-valued data. We also compute sil-
houette score with K-Means detected clusters for the origi-
nal JONNEE embeddings on 1000 nodes subgraph of HSE
dataset (see Figure 2). The observation that clustering is
induced by diffusion is indeed not surprising: when a trun-
cated random walk with generic parameters p, g ~ 1 most
often leaves the starting node in a few hops, diffusion stays
local due to the same probability of nodes being sampled in
diffusion graph.

(b) diffusion features, silhCoef
0.664

(a) random walk features, silh-
Coef 0.256

FIGURE 2. Diffusion features aid clustering in the embedding space of
Weighted HSE dataset. Higher silhouette scores correspond to better
clusters.

C. COMPONENTS TESTING: -MASKING

In these experiments, we aim to find out whether masking
aids learning. For this purpose, both positive and negative
values were tested, with positive employed to smooth learn-
ing and negative to force closer fitting on training data. The
results for selected representative mask intensities for Cit-
HepTh and Ca-GrQc are shown in Table 5. It shows that a
small positive S-value improves generalization by regulariz-
ing the model, but negative masking is unstable and requires
further investigation.

We also try taking larger masks for the dual optimizer
since, in the node-based tasks, it is only required to learn
representations consistent with the primal graph rather than
perform well on edge-based tasks. The Table 6 shows
some results for varying B* with the same optimal Bs
on every dataset. We find that by taking a B*>p, it is
possible to improve quality. Overall, however, parameter
tuning for masking coefficients offers only marginal improve-
ments when the appropriate order of magnitude is found,

so defaulting it to B = 0.01,8* = 0.02 is a good
choice.
TABLE 5. Testing 8 values.
Dataset \ model | No masking B =-0.01 B =0.01 Metric
0.594 £ 0.044 | 0.605+=0.084 | 0.600 £0.064 | Acc
Cit-HeoTh 0.741£0.060 | 0.740 +0.068 | 0.757 4 0.072 | ROC
P 0.812£0.050 | 0.8114+0.054 | 0.82140.053 | AP
0.651 £0.040 | 0.649+0.048 | 0.654 4 0.056 | FI
0.660 £ 0.043 | 0.653 £0.036 | 0.656 £0.020 | Acc
Ca-Groe 0.802£0.043 | 0.801+0.034 | 0.804+0.033 | ROC
0.845+0.032 | 0.839+0.025 | 0.85140.025 | AP
0.703 £0.038 | 0.705+0.033 | 0.714 4+ 0.027 | FI

144654

TABLE 6. Changing g* with fixed g = 0.01.

Dataset \ model | 8* =0.18 B* =28 B* =108 Metric
0.619 £0.048 | 0.620 £ 0.056 | 0.600 & 0.066 Acc
Cit-HepTh 0.733£0.055 | 0.750 £0.067 | 0.730 £ 0.081 ROC
0.818 £0.046 | 0.820 £ 0.049 | 0.809 4 0.057 AP
0.660 £ 0.043 | 0.666 = 0.049 | 0.655 4 0.062 F1
0.662 £0.008 | 0.669 = 0.008 | 0.665+ 0.015 Acc
Ca-GrQc 0.804 £0.020 | 0.805+0.018 | 0.803 £ 0.022 ROC
0.851 £0.021 | 0.854 £0.019 0.855 £0.016 | AP
0.706 £0.011 | 0.708 £ 0.006 0.711 +£0.013 | F1
TABLE 7. Laplacian regularization for tied 1s.
Dataset \ model [No Laplacian A=0.1 A=1. Metric
0.630 £0.017 | 0.642 +0.020 | 0.600 £ 0.043 Acc
Cit-HepTh 0.784£0.018 | 0.794 +0.014 | 0.786 +0.023 ROC
0.780 £0.012 | 0.788 £ 0.025 0.832 +£0.023 | AP
0.683 £0.016 | 0.691 +0.013 | 0.684 +0.019 F1
0.594 £0.054 | 0.592 £ 0.058 0.597 £0.043 | Acc
Ca-GrQc 0.736 £0.062 | 0.768 £ 0.071 | 0.757 4+ 0.053 ROC
0.811£0.044 | 0.809 £ 0.055 | 0.808 4 0.042 AP
0.649 +£0.046 | 0.681 +0.048 | 0.673 & 0.036 F1
TABLE 8. Choosing 1*.
Dataset \ model A =0.1X AT =2) AF =10
0.612£0.052 | 0.612+0.061 | 0.609 & 0.055 Acc
Cit-HepTh, A = 0.1 0.740 £0.070 | 0.745 +0.082 | 0.743+0.074 ROC
’ 0.812 £0.050 | 0.814 +0.059 | 0.813 4 0.057 AP
0.658 +0.049 | 0.659 & 0.060 | 0.655 4 0.057 F1
0.651 £0.012 | 0.657 £0.021 0.665 +0.028 | Acc
Ca-GrQc 0.793 £0.018 | 0.802 4+ 0.018 0.804 +£0.018 | ROC
0.843 £0.011 | 0.858 £ 0.011 | 0.855+0.011 AP
0.699 £0.015 | 0.707 £ 0.015 0.713 £0.019 | F1
TABLE 9. Joint training comparison.
Dataset \ model | No joint loss C =0.01 C =1 Metric
0.590 £0.060 | 0.612 +0.048 | 0.557 +0.038 Acc
Cit-HepTh 0.740 £0.063 | 0.752 £ 0.060 0.759 £0.044 | ROC
0.810 £0.052 | 0.818 £0.048 | 0.786 £ 0.041 AP
0.650 £ 0.050 | 0.661 £ 0.046 0.672 +£0.021 | F1
0.640 £0.025 | 0.661 +0.018 | 0.645+0.019 Acc
Ca-GrQc 0.793 £0.024 | 0.803 +0.020 | 0.787 4 0.024 ROC
0.846 £0.015 | 0.854 +0.013 | 0.843+0.013 AP
0.697 £0.023 | 0.709 +0.016 | 0.700 £ 0.019 Fl

D. COMPONENTS TESTING: LAPLACIAN
REGULARIZATION

Similar to the previous experiment, we test Laplacian regular-
ization for A* = A choosing the best parameter (see Table 7)
and then try varying the ratio between the two coefficients
(see Table 8). Experiments show that adding Laplacian reg-
ularization slightly improved the quality of our model. The
improvement that A*-tuning offers is fairly small, so it is
enough to set A = 0.1 and A* = 0.2.

E. COMPONENTS TESTING: LEARNING WITH DUAL
GRAPH CONSTRAINT
In this set of experiments, we test one of the central features of
our model — learning joint embedding for nodes and edges as
nodes of the dual graph. From the results reported in Table 9,
we see that dual learning with a small parameter coefficient
provides an improvement over a node-based link prediction.
Remark 3: It is important to say a few words on hyper-
parameter choice and scaling. We observe that imposing a
joint loss benefits the quality of resulting node embeddings.

VOLUME 9, 2021

I. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

IEEE Access

However, training with it should be managed more care-
fully by tuning the step size so that one component of the
loss function does not outweigh the others. In particular,
the common loss should not overbalance the respective losses
of the two autoencoders. Otherwise, the model would still
learn to approximate averages, but these would be of low
quality, not fit to reconstruct edges, and useless altogether.
For that, we compute the ratio of loss components Lg and
the remaining part and then scale the remainder down by
that constant factor on each subsequent iteration. This way,
we achieve the initial composition of losses on the order
of 1 : A for the primal model’s weights and on the order
of 1 : A* for the dual model’s weights, with optimization
weighing gradient directions in the same way. During the
process of optimization, these ratios may change, but the
initial calibration is essential.

F. ALTERNATING OPTIMIZATION

We conduct two tests of the alternating optimization (see
Table 10) and observe that, although the mean results for
classification scores are generally worse, sample variance
across different runs is consistently reduced for alternating
optimization. This leads us to the idea that by selecting an
appropriate number of steps performed by each optimizer
before passing over to dual and learning rates, one could
perform better with this procedure.

TABLE 10. Optimization modes comparison.

Dataset \ mode | Simultaneous Alternating Metric
0.565 £ 0.09 0.562 £0.092 | Acc

Cit-HepTh 0.661 £0.124 | 0.641 +0.087 | ROC
0.734 £0.103 | 0.731+0.089 | AP
0.612 £0.095 | 0.591+0.088 | Fl
0.586 £0.074 | 0.582 % 0.067 | Acc

Ca-GrQc 0.681 £0.091 | 0.685+0.078 | ROC
0.750 £0.042 | 0.762+0.072 | AP
0.641 £0.051 | 0.627+0.042 | Fl

V. EVALUATION FOR GRAPH MACHINE LEARNING

We perform a comparison with state-of-the-art graph embed-
ding models on link prediction (unsupervised setting), node
classification (unsupervised and semi-supervised settings),
and network visualization (unsupervised setting) problems.
Each Table shows the results of our best model after testing
of components. The compared models are chosen with default
hyperparameters, as stated in corresponding research papers.
A unique pipeline for training and evaluation of all the models
was applied in each experiment compared here.

A. LINK PREDICTION OVERALL

We compare our model to a selection of other popular
structural embedding models based on different principles:
HOPE [16] and GraphFactorization (GrF in Tables) [79]
based on matrix factorizations, node2vec (N2v in Tables)
and unmodified diff2vec (D2v in Tables) learning rep-
resentations from sampled sequences, and to GAE [59],

VOLUME 9, 2021

GAT [61], GraphSAGE (GrS in Tables) [60], a deep learn-
ing models for graphs. With this, we want to verify that
our JONNEE can be compared favorably along all dimen-
sions, against a diverse set of models, according to various
metrics and datasets. Results of our experiments are shown
in Table 11. In the experiments, we take the embedding
dimension to be d = 16 and sample several subgraphs
while holding a train/validation/test split constant with pro-
portion 0.85/0.05/0.1. Other hyperparameters were default
for benchmark models. We use implementation of GAT, and
GraphSAGE from DGL framework [80]. The default number
of layers here for both models is 2. GraphSAGE uses GCN
aggregation. The results show that tuned JONNEE with dif-
fusion features and 400 epochs mostly outperforms baselines.

Despite the larger number of parameters (due to account-
ing for Line Graph), Figure 3 shows that our model con-
verges faster than GAT and GraphSAGE on HSE, Cit-HepTh,
Ca-GrQc datasets.

B. MULTI-CLASS CLASSIFICATION FOR NODES
In this set of experiments, we verify that the model’s perfor-
mance generalizes well from link prediction to other tasks
such as multi-class node classification. Additionally, we offer
a simplified version of our Dual Autoencoder JONNEE,
named JONNLEE, directly adapted to incorporate available
node labels during training in a semi-supervised manner.
Evaluating our model on multi-class classification, we no
longer specify sample standard deviations to keep the tables
clean. We train models on the 80% subsample and validate
on the rest 20%.

1) UNSUPERVISED REPRESENTATION EXTRACTION

In these experiments, we train models on the entire graph G
in an unsupervised way to generate node embeddings and
then fit a Random forest with default parameters for multi-
class classification on a random subsample of node represen-
tations to evaluate the quality of embeddings. By producing
embeddings, we reduce the node classification problem to a
standard classification problem with vector input. We choose
Random forest as one baseline method proved to show better
performance compared to other standard methods like sup-
port vector machine (SVM) or gradient boosting (XGBoost)
on multi-class classification problem on embedding vectors
for co-authorship networks [14], while leaving compari-
son on other methods for JONNEE representation for the
future work. All models, except for Graph Factorizations,
perform better than random (which in the case of Cora
is & 0.14 accuracy). The results are reported in Table 12.

2) JONNLEE: SEMI-SUPERVISED ANALOGUE OF JONNEE

By exploiting knowledge of labels during the training stage,
we incorporate task knowledge into the embeddings and
expect better performance on the relevant task. For a fair
comparison, we take another semi-supervised model GCN
and compare it to JONNLEE, a semi-supervised modifica-
tion of JONNEE. From this experiment, we verify that the

144655

IEEE Access

1. Makarov et al.:

JONNEE: Joint Network Nodes and Edges Embedding

175 4

150 4

125 4

100 4

loss

754

50 4

— GAT
GraphSAGE
—— JONNEE

loss

100

— GAT
GraphSAGE
—— JONNEE

120 4

—— GAT
GraphSAGE
—— JONNEE

100

80

loss

60 4

40 1

204

100

100

] 20 40 60 80 0 20 40 60 80] 20 60 80
epoch epoch epoch
FIGURE 3. Convergence of loss function for GAT, GraphSAGE and JONNEE models.
TABLE 11. Link prediction evaluation.
GrF HOPE N2v D2v GAE GAT GrS Ours Metric
0.555 £ 0.035 | 0.741 £0.012 0.616 £0.024 | 0.720 £0.023 | 0.633 +0.010 | 0.725 4+ 0.012 0.722 £ 0.010 0.751 £0.010 | Acc
Cit-HepTh 0.564 £ 0.044 | 0.730 £0.014 0.758 £0.023 | 0.799 £0.012 | 0.778 £ 0.018 | 0.9095 + 0.017 0.936 £ 0.015 | 0.817 £ 0.007 ROC
0.554 £0.024 | 0.759 £0.012 0.757 £0.019 | 0.817 £0.007 | 0.84540.017 | 0.8995 £ 0.015 0.927 £0.015 | 0.841 £ 0.004 AP
0.583 £0.032 | 0.682 + 0.018 0.698 +£0.016 | 0.730 £0.018 | 0.677 +0.011 | 0.7830+0.012 | 0.782 + 0.011 0.748 £ 0.010 F1
0.596 £ 0.017 | 0.689 £ 0.008 0.557 £0.025 | 0.615+0.027 | 0.602+0.016 | 0.721 +0.015 0.690 £ 0.013 0.642 £ 0.027 Acc
Ca-GrQc 0.661 £ 0.025 | 0.690 £ 0.009 0.732 £0.010 | 0.735+0.011 | 0.670 +0.016 | 0.927 +0.014 0.916 £ 0.013 0.797 £0.011 ROC
0.682 £ 0.022 | 0.693 £ 0.008 0.800 £ 0.009 | 0.795+0.003 | 0.718 +0.023 | 0.930 + 0.019 0.909 £ 0.017 0.852 £ 0.004 AP
0.631 £ 0.016 | 0.557 £+ 0.018 0.657 £0.010 | 0.644 +0.013 | 0.630+0.015 | 0.782 + 0.014 0.763 £ 0.012 0.700 £ 0.020 F1
0.665 £ 0.000 | 0.777 £ 0.000 0.477 £0.005 | 0.463 £0.000 | 0.566 + 0.000 | 0.684 4 0.000 0.699 + 0.000 0.793 £ 0.006 | Acc
HSE 0.745 £ 0.000 | 0.781 £ 0.000 0.674 £0.009 | 0.751£0.000 | 0.678 +0.000 | 0.907 £ 0.000 0.925 £+ 0.000 | 0.876 £ 0.003 ROC
0.766 £+ 0.000 | 0.783 £ 0.000 0.743 £0.009 | 0.842+0.000 | 0.706 +0.000 | 0.910 4 0.000 0.920 £ 0.000 | 0.906 %+ 0.002 AP
0.715 £ 0.000 | 0.717 £ 0.000 0.631 £ 0.005 | 0.601 £ 0.000 | 0.558 +0.000 | 0.760 4 0.000 0.769 £+ 0.000 | 0.748 £ 0.005 Fl1
Blog 0.598 £ 0A0‘27 0.734 +0.012 0'60.1 +0.008 0A6l9l8 +0.009 0A6‘62 +0.011 | 0.647 £+ 0.007 0.649 +£ 0.008 0.699 £ 0.010 Acc
~Catalog 0.539 £0.035 | 0.798 £ 0.001 0.703 £0.021 | 0.733 £0.010 | 0.830+0.005 | 0.778 4 0.009 0.767 £ 0.008 0.890 £+ 0.004 | ROC
0.477 £0.020 | 0.839 £ 0.006 0.631 £0.017 | 0.672+0.017 | 0.880 +0.005 | 0.681 4 0.006 0.681 £ 0.005 0.904 £ 0.003 | AP
0.660 £ 0.036 | 0.750 £ 0.006 0.707 £0.005 | 0.752+0.005 | 0.719 +0.007 | 0.737 4 0.006 0.739 £ 0.005 0.753 + 0.005 | FI

TABLE 12. Node classification evaluation.

GrF HOPE | N2v D2v GAE GAT GrS Ours Metric
Cora 0.087 | 0.577 | 0.714 | 0.681 | 0.625 | 0.449 | 0.503 | 0.760 | Acc
0.154 | 0.689 | 0.804 | 0.779 | 0.734 | 0.371 | 0.457 | 0.831 | F1
Blog 0.060 | 0.060 | 0.065 | 0.065 | 0.063 | 0.074 | 0.054 | 0.085 | Acc
~Catalog | 0.021 | 0.010 | 0.020 | 0.020 | 0.020 | 0.016 | 0.019 | 0.017 | FI
TABLE 13. JONNLEE in semi-supervised mode.
Dataset \ model | GCN | GAT GrS Ours Metric
Cora 0.840 | 0.862 | 0.854 | 0.870 | Acc
0.820 | 0.838 | 0.833 | 0.843 | F1
Blog-Catalo 0.140 | 0.158 | 0.155 | 0.160 | Acc
£ e 0.037 | 0.081 | 0.079 | 0.089 | FI

proposed modification of JONNEE for the semi-supervised
setting outperforms the model without supervision and also
compares favorably to the original GCN (see Table 13).

C. VISUALIZATION AND COMMUNITY DETECTION
Finally, we briefly demonstrate that the embeddings learned
by JONNEE are suitable for visualization. For this, we com-
pare it to diff2vec [37], known for accurate and highly
modular cluster visualization. We use the Cora dataset,
which is convenient due to having only a single label per
node, which can be interpreted as a community/cluster label.
In this case, communities are topic groups of papers on
the “machine learning” topic, with features containing their
TF-IDF encoded content and links representing citations.
We learn 100-dimensional embeddings to retain more
information by both models and use TSNE [78] to obtain

144656

(a) JONNEE with d=100

(b) diff2vec with d=100

FIGURE 4. Comparison of visualization for diffusion and JONNEE.

planar embeddings. We then plot the embeddings and edges
between them and color the points according to their class
labels. The results for both models are displayed in Figure 4,
where we see that embeddings learned by diff2vec in an
unsupervised way are nicely aligned with true labels, while
JONNEE not only identifies thematic communities by label
but also forms a cleaner and more modular cluster.

D. DISCUSSION

We see that the quality of the embeddings learned by
JONNEE is almost always superior to state-of-the-art struc-
tural models. Moreover, it is exceptionally flexible and is able
to beneficially incorporate both node and edge features and
weights while being stable to hyperparameter perturbations.
However, our model has a certain drawback of longer train-
ing, similar to matrix factorizations but less parallelizable.

VOLUME 9, 2021

I. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

IEEE Access

Our model has complexity O(|E |2) in the worst case, which
is arguably far from efficient. However, the paper is intended
as a proof of concept for (edge-to-vertex) ‘dual’ graphs to
be used and explored in tandem with regular graphs to learn
more accurate representations. Moreover, for sparse real-
world networks, this complexity is lower than the complexity
of some factorizations, as mentioned above. Additional mem-
ory consumption is at worst |E|? at runtime, but storing all of
the extra data is unnecessary. These problems we believe to be
solvable with clever approximations to the dual graph similar
to [11], [12], for which we have not found open-source code
to conduct comparison. Code of our model and experiments
could be found on GitHub.!

VI. CONCLUSION

In this work, we have developed a new embedding model
JONNEE which learns high-quality node representations in
tandem with edge representations. We have implemented
the model and conducted an extensive range of experiments
demonstrating that the model performs well compared to
other state-of-the-art benchmarks.

The quality of the embeddings learned by JONNEE is
almost always superior in the link prediction problem to
those learned by state-of-the-art models of all different
types: matrix factorization based, sequence-based. However,
it shows competitive results to other deep learning methods.
The model performs well in both unsupervised and semi-
supervised settings for the node classification task. In addi-
tion, embeddings learned by JONNEE have a well-clustered
structure and are suitable for visualization. JONNEE is
exceptionally flexible and is able to beneficially incorporate
both node and edge features and weights while being stable
to hyperparameter perturbations.

However, our model has a certain drawback of longer train-
ing similar to matrix factorizations but less parallelizable.
It can be overcome via changing core architecture compo-
nents: graph autoencoders may be changed to graph sampling
models or inductive models so that JONNEE will be able
to process large and temporal networks. Also, it is interest-
ing to see how the construction of joint constraints may be
generalized for arbitrary embedding operators that can be
approximated by a deep neural network of incident nodes
embeddings. We believe that presented via Line graph self-
supervision on learning network representation is a promising
approach generalizing for complex networks.

ACKNOWLEDGMENT
The authors are grateful to Daniil Tikhomirov for his invalu-
able contribution to polishing the article presentation and text.

AUTHOR CONTRIBUTION

Ilya Makarov: Experiment design, evaluation, paper prepa-
ration, and research supervision. Ksenia Korovina: Model
design and implementation, paper preparation, and coding

1 https://github.com/mkiseljov/JONNEE

VOLUME 9, 2021

experiments. Dmitrii Kiselev: Design of revision experi-
ments, additional evaluation, and paper revision update.

REFERENCES

[1] L. G. Moyano, “Learning network representations,” Eur. Phys. J. Spe-
cial Topics, vol. 226, no. 3, pp. 499-518, Feb. 2017. [Online]. Available:
https://link.springer.com/10.1140/epjst/e2016-60266-2

[2] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” 2017, arXiv:1709.05584. [Online].
Available: https://arxiv.org/abs/1709.05584

[3] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, Sep. 2018. [Online].
Available: https://ieeexplore.ieee.org/document/8294302/

[4] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”

IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833-852, May 2018.

[Online]. Available: https://ieeexplore.ieee.org/document/8392745/

P. Goyal and E. Ferrara, “Graph embedding techniques, applications,

and performance: A survey,” Knowl.-Based Syst., vol. 151, pp. 78-94,

Jul. 2018.

[6] H. Chen, B. Perozzi, R. Al-Rfou, and S. Skiena, “A tutorial on
network embeddings,” 2018, arXiv:1808.02590. [Online]. Available:
https://arxiv.org/abs/1808.02590

[7]1 Z.Wu, S.Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive
survey on graph neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 1, pp. 4-24, Jan. 2021.

[8] I. Makarov, D. Kiselev, N. Nikitinsky, and L. Subelj, “Survey on graph
embeddings and their applications to machine learning problems on
graphs,” PeerJ Comput. Sci., vol. 7, p. €357, Feb. 2021.

[91 A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, Aug. 2016, pp. 855-864, New York, NY, USA, doi:
10.1145/2939672.2939754.

[10] S. Abu-El-Haija, B. Perozzi, and R. Al-Rfou, “‘Learning edge represen-
tations via low-rank asymmetric projections,” in Proc. ACM Conf. Inf.
Knowl. Manage., Nov. 2017, pp. 1787-1796. New York, NY, USA, doi:
10.1145/3132847.3132959.

[11] P. Goyal, H. Hosseinmardi, E. Ferrara, and A. Galstyan, ‘“Captur-
ing edge attributes via network embedding,” IEEE Trans. Comput.
Social Syst., vol. 5, no. 4, pp. 907-917, Dec. 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8536422/

[12] F. Monti, O. Shchur, A. Bojchevski, O. Litany, S. Giinnemann, and
M. M. Bronstein, “Dual-primal graph convolutional networks,” 2018,
arXiv:1806.00770. [Online]. Available: https://arxiv.org/abs/1806.00770

[13] I. Makarov, O. Gerasimova, P. Sulimov, and L. E. Zhukov, ‘‘Recommend-
ing co-authorship via network embeddings and feature engineering: The
case of national research university higher school of economics,” in Proc.
18th ACM/IEEE Joint Conf. Digit. Libraries, May 2018, pp. 365-366,
New York, NY, USA, doi: 10.1145/3197026.3203911.

[14] 1. Makarov, O. Gerasimova, P. Sulimov, and L. E. Zhukov, “Dual net-
work embedding for representing research interests in the link prediction
problem on co-authorship networks,” PeerJ Comput. Sci., vol. 5, p. e172,
Jan. 2019. [Online]. Available: https://peerj.com/articles/cs-172

[15] I. Makarov, O. Gerasimova, P. Sulimov, K. Korovina, and L. E. Zhukov,
“Joint node-edge network embedding for link prediction,” in Analysis
of Images, Social Networks and Texts (Lecture Notes in Computer Sci-
ence), vol. 11179. Moscow, Russia: Springer, Jul. 2018, pp. 20-31, doi:
10.1007/978-3-030-11027-7_3.

[16] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity pre-
serving graph embedding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Aug. 2016, pp. 1105-1114,
doi: 10.1145/2939672.2939751.

[17] J. Kruskal and M. Wish, Multidimensional Scaling, no. 11. Newbury Park,
CA, USA: Sage, 1978.

[18] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391-407, 1990.

[19] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” in Linear Algebra. Springer, 1971, pp. 134-151, ch. 10,
doi: 10.1007/978-3-662-39778-7_10.

[20] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319-2323, Dec. 2000.

[5

—

144657

http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/3132847.3132959
http://dx.doi.org/10.1145/3197026.3203911
http://dx.doi.org/10.1007/978-3-030-11027-7_3
http://dx.doi.org/10.1145/2939672.2939751
http://dx.doi.org/10.1007/978-3-662-39778-7_10

IEEE Access

1. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323-2326,
Dec. 2000.

X. He and P. Niyogi, “Locality preserving projections,” in Advances in
Neural Information Processing Systems, vol. 16, S. Thrun, L. Saul, and
B. Schélkopf, Eds. Cambridge, MA, USA: MIT Press, 2004. [Online].
Available: https://proceedings.neurips.cc/paper/2003/file/d69116£8
b0140cdeb1f99a4d5096ffe4-Paper.pdf

M. Belkin and P. Niyogi, “Laplacian eigenmaps
techniques for embedding and clustering,” in
Neural Information Processing Systems. Cambridge, MA, USA:
MIT Press, 2002, pp.585-591. [Online]. Available: https://www-
2.cs.cmu.edu/Groups/NIPS/NIPS2001/papers/psgz/AA42.ps.gz

B. Shaw and T. Jebara, “Structure preserving embedding,” in Proc. 26th
Annu. Int. Conf. Mach. Learn. (ICML), New York, NY, USA, 2009,
pp. 937-944.

D. Luo, F. Nie, H. Huang, and C. H. Ding, “Cauchy graph embedding,” in
Proc. 28th Int. Conf. Mach. Learn. (ICML), 2011, pp. 553-560. [Online].
Available: https://icml.cc/2011/papers/353_icmlpaper.pdf

S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representations with
global structural information,” in Proc. 24th ACM Int. Conf. Inf. Knowl.
Manage., New York, NY, USA, Oct. 2015, pp. 891-900.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in Neural Information Processing
Systems, vol. 26, C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, Eds. Red Hook,
NY, USA: Curran Associates, 2013. [Online]. Available:
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ecO
39965f3¢c4923ce901b-Paper.pdf

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Aug. 2014, pp. 701-710,
New York, NY, USA, doi: 10.1145/2623330.2623732.

B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, “Don’t walk, skip! Online
learning of multi-scale network embeddings,” 2016, arXiv:1605.02115.
[Online]. Available: https://arxiv.org/abs/1605.02115

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in Proc. 24th Int. Conf. World
Wide Web, 2015, pp. 1067-1077.

H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical represen-
tation learning for networks,” in Proc. AAAI Conf. Artif. Intell., vol. 32,
2018, pp. 2127-2134. [Online]. Available: https://ojs.aaai.org/index.php/
AAAT/article/view/11849

L. Tang and H. Liu, “Relational learning via latent social dimensions,”
in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), New York, NY, USA, 2009, pp. 817-826. [Online]. Available:
https://portal.acm.org/citation.cfm?doid=1557019.1557109

R. Feng, Y. Yang, W. Hu, F. Wu, and Y. Zhang, “Representation
learning for scale-free networks,” in Proc. AAAI Conf. Artif. Intell.,
vol. 32, 2018, pp. 282-289. [Online]. Available: https://ojs.aaai.org/
index.php/AAAl/article/view/11256

B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton, “GEMSEC:
Graph embedding with self clustering,” in Proc. IEEE/ACM Int. Conf.
Adv. Social Netw. Anal. Mining, New York, NY, USA, Aug. 2019,
pp. 65-72.

S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. A. Alemi, ‘“Watch your
step: Learning node embeddings via graph attention,” in Advances
in Neural Information Processing Systems, vol. 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds. Red Hook, NY, USA: Curran Associates, 2018. [Online]. Available:
https://proceedings.neurips.cc/paper/2018/file/8a94ecfa54dcb88a2f
2993bfa6388f9e-Paper.pdf

Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, and Y. Qi, “Geniepath:
Graph neural networks with adaptive receptive paths,” in Proc. 33rd AAAI
Conf. Artif. Intell., vol. 33, 2019, pp. 4424-4431.

B. Rozemberczki and R. Sarkar, “Fast sequence-based embedding
with diffusion graphs,” in Proc. Int. Workshop Complex Netw. Cham,
Switzerland: Springer, 2018, pp. 99-107.

D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

and spectral
Advances in

144658

(39]

[40]

[41]

(42]

[43]

(44]

(45]

(46]

[47]

(48]

[49]

[50]

(51]

(52]

(53]

(54]

[55]

A. Ortega, P. Frossard, J. Kovacevi¢, J. M. F. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808-828, May 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8347162/

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE Trans.
Neural Netw., vol. 20, no. 1, pp. 61-80, Jan. 2009. [Online]. Available:
https://ieeexplore.ieee.org/document/4700287/

K. Li, J. Gao, S. Guo, N. Du, X. Li, and A. Zhang, “LRBM:
A restricted Boltzmann machine based approach for representation learn-
ing on linked data,” in Proc. IEEE Int. Conf. Data Mining, Dec. 2014,
pp. 300-309.

X.Li,N.Du, H.Li, K. Li,J. Gao, and A. Zhang, ““A deep learning approach
to link prediction in dynamic networks,” in Proc. SIAM Int. Conf. Data
Mining, 2014, pp. 289-297.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embed-
ding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2016, pp. 1225-1234, doi:
10.1145/2939672.2939753.

S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning
graph representations,” in Proc. AAAI Conf. Artif. Intell., vol. 30,
2016, pp. 1145-1152. [Online]. Available: https://ojs.aaai.org/index.php/
AAAV/article/view/10179

T. N. Kipf and M. Welling, ““Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907. [Online]. Available:
https://arxiv.org/abs/1609.02907

J. Chen, J. Zhu, and L. Song, “Stochastic training of graph con-
volutional networks with variance reduction,” in Proc. 35th Int.
Conf. Mach. Learn., vol. 80, J. Dy and A. Krause, Eds. Stock-
holm, Sweden: PMLR, Jul. 2018, pp. 942-950. [Online]. Available:
https://proceedings.mlr.press/v80/chen18p.html

J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in Proc. Int.
Conf. Learn. Represent., 2018, pp. 1-15. [Online]. Available:
https://openreview.net/forum?id=rytstx WAW

M. Lei, Y. Shi, and L. Niu, “The applications of stochastic models in
network embedding: A survey,” in Proc. IEEE/WIC/ACM Int. Conf. Web
Intell. (WI), Dec. 2018, pp. 635-638.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, ““Spectral networks and
locally connected networks on graphs,” 2013, arXiv:1312.6203. [Online].
Available: https://arxiv.org/abs/1312.6203

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, ‘“Convolutional
networks on graphs for learning molecular fingerprints,” in
Advances in Neural Information Processing Systems, vol. 28,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, 2015. [Online]. Available:
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8
150a60844bb94c-Paper.pdf

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks
on graph-structured data,” 2015, arXiv:1506.05163. [Online]. Available:
https://arxiv.org/abs/1506.05163

M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proc. 33rd Int. Conf. Mach. Learn.,
vol. 48, M. F. Balcan and K. Q. Weinberger, Eds. New York, NY,
USA: PMLR, 20-22 Jun. 2016, pp.2014-2023. [Online]. Available:
https://proceedings.mlr.press/v48/niepert16.html

M. Defferrard, X. Bresson, and P. Vandergheynst, ‘“Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in Neural Information Processing Systems, vol. 29,
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, 2016. [Online]. Available:
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb7
23be1b6df1ee65-Paper.pdf

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral fil-
ters,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97-109, Jan. 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8521593/

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein, “Geometric deep learning on graphs and manifolds
using mixture model CNNs,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jul. 2017, pp.5115-5124. [Online]. Available: https://
openaccess.thecvf.com/content_cvpr_2017/html/Monti_Geometric%_
Deep_Learning_ CVPR_2017_paper.html

VOLUME 9, 2021

http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2939672.2939753

I. Makarov et al.: JONNEE: Joint Network Nodes and Edges Embedding

IEEE Access

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

M. Fey, J. E. Lenssen, F. Weichert, and H. Miiller, “SplineCNN: Fast
geometric deep learning with continuous B-spline kernels,” in Proc.
IEEE CVPR, Jun. 2018, pp.869-877. [Online]. Available: https:/
openaccess.thecvf.com/content_cvpr_2018/html/Fey_SplineCNN_%
Fast_Geometric_CVPR_2018_paper.html

J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in Neural Information Processing Systems, vol. 29,
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, 2016. [Online]. Available:
https://proceedings.neurips.cc/paper/2016/file/390e982518a50e2
80d8e2b535462ec1f-Paper.pdf

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1-16. [Online]. Available: https://openreview.net/
forum?id=SJiHXGWAZ

T. N. Kipf and M. Welling, ““Variational graph auto-encoders,” 2016,
arXiv:1611.07308. [Online]. Available: https://arxiv.org/abs/1611.07308
W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information
Processing Systems, vol. 30, 1. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, 2017. [Online]. Available:
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6{b5
ba83c7a7ebea9-Paper.pdf

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1-12. [Online]. Available: https://openreview.net/
forum?id=rJXMpikCZ

C. Tu, H. Liu, Z. Liu, and M. Sun, “CANE: Context-aware net-
work embedding for relation modeling,” in Proc. 55th Annu. Meet-
ing Assoc. Comput. Linguistics. Vancouver, BC, Canada, Jul. 2017,
pp. 1722-1731.

X. Huang, J. Li, and X. Hu, “Label informed attributed network embed-
ding,” in Proc. 10th ACM Int. Conf. Web Search Data Mining, New York,
NY, USA, Feb. 2017, pp. 731-739, doi: 10.1145/3018661.3018667.

H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, and J. Han, “Large-scale
embedding learning in heterogeneous event data,” in Proc. 16th Int. Conf.
Data Mining (ICDM), Dec. 2016, pp. 907-912.

C. Moon, P. Jones, and N. F. Samatova, ‘“Learning entity type
embeddings for knowledge graph completion,” in Proc. ACM Conf.
Inf. Knowl. Manage., Nov. 2017, pp. 2181-2187. [Online]. Available:
https://ojs.aaai.org/index.php/AAAl/article/view/9491

I. Makarov and O. Gerasimova, “Link prediction regression for weighted
co-authorship networks,” in Proc. Int. Work-Conf. Artif. Neural Netw.
Cham, Switzerland: Springer, 2019, pp. 667-677.

I. Makarov and O. Gerasimova, ‘Predicting collaborations in co-
authorship network,” in Proc. 14th Int. Workshop Semantic Social Media
Adaptation Personalization (SMAP), Jun. 2019, pp. 1-6.

I. Makarov, O. Gerasimova, P. Sulimov, and L. E. Zhukov, ““Co-authorship
network embedding and recommending collaborators via network embed-
ding,” in Proc. Int. Conf. Anal. Images, Social Netw. Texts (Lecture Notes
in Computer Science), vol. 11179. Cham, Switzerland: Springer, 2018,
pp. 32-38, doi: 10.1007/978-3-030-11027-7_4.

1. Makarov, O. Bulanov, O. Gerasimova, N. Meshcheryakova, I. Karpov,
and L. E. Zhukov, “Scientific matchmaker: Collaborator recommender
system,” in Analysis of Images, Social Networks and Texts (Lecture Notes
in Computer Science), vol. 10716. Cham, Switzerland: Springer, 2018,
pp. 404410, doi: 10.1007/978-3-319-73013-4_37.

Y. Liu, S. Pan, M. Jin, C. Zhou, F. Xia, and P. S. Yu, “Graph self-
supervised learning: A survey,” 2021, arXiv:2103.00111. [Online]. Avail-
able: https://arxiv.org/abs/2103.00111

Y. Xie, Z. Xu, Z. Wang, and S. Ji, “Self-supervised learning of graph
neural networks: A unified review,” 2021, arXiv:2102.10757. [Online].
Available: https://arxiv.org/abs/2102.10757

P. Goyal, H. Hosseinmardi, E. Ferrara, and A. Galstyan, “Embedding
networks with edge attributes,” in Proc. 29th Hypertext Social Media,
New York, NY, USA, Jul 2018, pp. 38-42, doi:
10.1145/3209542.3209571.

C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-
based semi-supervised classification,” in Proc. World Wide Web Conf.
WWW), 2018, pp. 499-508.

VOLUME 9, 2021

(74]

[75]

[76]
(77)

(78]

(791

(80]

1. Makarov, M. Makarov, and D. Kiselev, “Fusion of text and graph
information for machine learning problems on graphs,” PeerJ Comput.
Sci., vol. 7, pp. 1-26, May 2021.

Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in Proc. 33rd Int. Conf. Mach.
Learn., vol. 43, M. F. Balcan and K. Q. Weinberger, Eds. New
York, NY, USA: PMLR, Jun. 2016, pp.40-48. [Online]. Available:
https://proceedings.mlr.press/v48/yangal 6.html

J. Leskovec. (2004). Snap Project. [Online]. Available:
https://snap.stanford.edu/data/
HSE-DIT. (2017). HSE Publications. [Online]. Available:

https://publications.hse.ru/en

L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008. [Online]. Avail-
able: https://www.jmlr.org/papers/volume9/vandermaaten08a/

A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski,

and A. J. Smola, “Distributed large-scale natural graph
factorization,” in Proc. 22nd Int. Conf. World Wide Web,
New York, NY, USA, 2013, pp.37-48. [Online]. Available:

https://dl.acm.org/citation.cfm?doid=2488388.2488393

M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang,
“Deep graph library: A graph-centric, highly-performant package for
graph neural networks,” 2019, arXiv:1909.01315. [Online]. Available:
https://arxiv.org/abs/1909.01315

ILYA MAKAROV received the Specialist degree in
mathematics from the Lomonosov Moscow State
University, Moscow, Russia. He is currently pur-
suing the Ph.D. degree in computer science with
the University of Ljubljana, Ljubljana, Slovenia.
Since 2011, he has been a full-time Lecturer
with the School of Data Analysis and Artificial
Intelligence, HSE University, where he was the
School Deputy Head, from 2012 to 2016. He is
also the Program Director of BigData Academy

-~ A~
oh
-

MADE from VK, and a Researcher at Samsung-PDMI Joint Al Center,
St. Petersburg Department of V.A. Steklov Mathematical Institute, Russian
Academy of Sciences, Saint Petersburg, Russia, and also with the Artificial
Intelligence Research Institute, Moscow. He is also a Lecturer at the Moscow
Institute of Physics and Technology and a Machine Learning Engineer and
the Head of Data Science Tech Master Program in NLP at the National
University of Science and Technology MISIS.

KSENIA KOROVINA received the B.S. degree
in mathematics from HSE University, Moscow,
Russia, in 2018, and the M.S. degree in
machine learning from Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, in 2019.

From 2016 to 2019, she was a Research Assis-
tant with HSE University and Carnegie Mellon
University, and an Intern at Twitter. She is cur-
rently a Software Engineer at Google.

DMITRII KISELEV received the master’s degree
in applied mathematics and informatics from HSE
University, Moscow, Russia, where he is currently
pursuing the Ph.D. degree in computer science.
Since 2018, he has been a part-time Lecturer
with the School of Data Analysis and Artificial
Intelligence, HSE University. He is currently a
Researcher in the field of application of graph neu-
ral networks to the Industrial Al at the Artificial
Intelligence Research Institute, Moscow.

144659

http://dx.doi.org/10.1145/3018661.3018667
http://dx.doi.org/10.1007/978-3-030-11027-7_4
http://dx.doi.org/10.1007/978-3-319-73013-4_37
http://dx.doi.org/10.1145/3209542.3209571

